1617 lines
49 KiB
C
1617 lines
49 KiB
C
#define LUA_LIB
|
||
|
||
#include <lua.h>
|
||
#include <lauxlib.h>
|
||
|
||
#include <time.h>
|
||
#include <stdint.h>
|
||
#include <string.h>
|
||
#include <stdlib.h>
|
||
#include <unistd.h>
|
||
|
||
#define PADDING_MODE_ISO7816_4 0
|
||
#define PADDING_MODE_PKCS7 1
|
||
#define PADDING_MODE_COUNT 2
|
||
|
||
#define SMALL_CHUNK 256
|
||
//---------------------------------------------------------------------AES Start-----------------------------------
|
||
#define Nb 4 //加解密数据块大小,固定为4
|
||
#define MAX_AES_DATA_LEN 204800
|
||
//加密类型对应的密匙长度,单位bit
|
||
typedef enum {
|
||
AES128 = 128,
|
||
AES192 = 192,
|
||
AES256 = 256,
|
||
} AESType_t;
|
||
|
||
//加解密模式
|
||
typedef enum {
|
||
AES_MODE_ECB = 0, // 电子密码本模式
|
||
AES_MODE_CBC = 1, // 密码分组链接模式
|
||
} AESMode_t;
|
||
|
||
typedef struct {
|
||
int Nk; //用户不需要填充,密钥长度,单位字节, AES128:Nk=16、AES192:Nk=24、AES256:Nr=32
|
||
int Nr; //用户不需要填充,加密的轮数 AES128:Nr=10、AES192:Nr=12、AES256:Nr=14
|
||
int type;//用户需填充,关联AESType_t
|
||
int mode;//用户需填充,关联AESMode_t
|
||
const void* key;//用户需填充,密匙
|
||
const void* pIV;//用户需填充,初始化向量, 当mode=AES_MODE_CBC时需要设置,指向unsigned char IV[4*Nb];
|
||
//AES拓展密匙, 空间大小 AES128:4*Nb*(10+1):4*Nb*(12+1)、AES256:4*Nb*(14+1)
|
||
unsigned char expandKey[4 * Nb * (14 + 1)];//用户不需要填充,[4*Nb*(Nr+1)]、这里按最大的AES256进行初始化
|
||
} AESInfo_t;
|
||
|
||
//秘钥,根据实际情况自己定义,AES128 用16字节、AES192 用24字节、AES256 用32字节
|
||
unsigned char aes_key[16] = { 'a','s','d','f','+','-','*','/','h','j','k','m',5,6,7,8 };
|
||
//unsigned char key[32] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x41,0x42,0x43,0x44,0x45,0x46, 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x41,0x42,0x43,0x44,0x45,0x46};
|
||
unsigned char key[32] = "04169967a0dda41831aae37ae5f7c37a";
|
||
|
||
|
||
//初始化向量, 固定长度16个, 当mode=AES_MODE_CBC时用到
|
||
// unsigned char IV[4*Nb] = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x41,0x42,0x43,0x44,0x45,0x46};
|
||
unsigned char aes_IV[16] = { 'q','w','e','r','t','y','u','i','o','p','g','b',51,53,55,59 };
|
||
|
||
//设置加密方式、密匙
|
||
AESInfo_t aesInfo;
|
||
|
||
|
||
// GF(2^8) 多项式
|
||
#define BPOLY 0x1B //x^4 + x^3 + x^1 + x^0= 从右边开始算,bit0、bit1、bit3、bit4、为1,bit2、bit5、bit6、bit7为0,即00011011=0x1B
|
||
|
||
/*
|
||
SubstituteBytes()
|
||
加密时:使用S盒,将待加密数据为S盒索引将加密数据替换为S盒的内容
|
||
解密时:使用逆S盒,将已加密数据为逆S盒索引将已加密数据替换为逆S盒子的内容
|
||
其实就是将数据按表替换,
|
||
例如待加密数据unsigned char data = 9;
|
||
加密数据:encryptData = SBox[data] = SBox[9] = 0x01;//注意索引从0开始
|
||
解密数据:decryptData = InvSBox[encryptData] = InvSBox[0x01] = 9;
|
||
SBox和InvSBox的关系是 data = InvSBox[SBox[data]];还跟GF(2^8) 多项式有关
|
||
*/
|
||
|
||
// 加密用的S盒
|
||
static const unsigned char SBox[256] =
|
||
{
|
||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
||
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
||
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
||
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
||
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
||
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
||
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
||
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
||
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
||
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
||
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
||
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
||
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
||
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
||
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|
||
};
|
||
|
||
// 解密用的SBox
|
||
static const unsigned char InvSBox[256] =
|
||
{
|
||
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
|
||
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
|
||
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
|
||
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
|
||
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
|
||
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
|
||
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
|
||
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
|
||
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
|
||
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
|
||
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
|
||
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
|
||
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
|
||
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
|
||
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
|
||
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
|
||
};
|
||
|
||
/*****************************************************************************
|
||
* 函数名: RShiftWord
|
||
* 功能描述: 对一个pWord 4字节数据进行循环右移。
|
||
* 输入参数: pWord -- 要右移的4字节数据。
|
||
* 输出参数: pWord -- 右移后的4字节数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void RShiftWord(unsigned char* pWord)
|
||
{
|
||
unsigned char temp = pWord[0];
|
||
pWord[0] = pWord[1];
|
||
pWord[1] = pWord[2];
|
||
pWord[2] = pWord[3];
|
||
pWord[3] = temp;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: XorBytes
|
||
* 功能描述: 异或两组数据。
|
||
* 输入参数: pData1 -- 要异或的第一组数据。
|
||
* pData2 -- 要异或的第二组数据。
|
||
* nCount -- 参与异或的数据长度。
|
||
* 输出参数: pData1 -- 异或后的结果。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void XorBytes(unsigned char* pData1, const unsigned char* pData2, unsigned char nCount)
|
||
{
|
||
unsigned char i;
|
||
for (i = 0; i < nCount; i++) {
|
||
pData1[i] ^= pData2[i];
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AddKey
|
||
* 功能描述: 把 pData数据 加上(异或)pKey密钥,数据长度为16字节。
|
||
* 输入参数: pData -- 数据。
|
||
* pKey -- 密钥。
|
||
* 输出参数: pStpDataate -- 加上子密钥后的数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void AddKey(unsigned char* pData, const unsigned char* pKey)
|
||
{
|
||
XorBytes(pData, pKey, 4 * Nb);
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: SubstituteBytes
|
||
* 功能描述: 通过S盒子置换数据。
|
||
* 输入参数: pData -- 数据。
|
||
* dataCnt -- 数据长度。
|
||
* pBox -- 置换盒子,加密时使用SBox, 解密时使用InvSBox
|
||
* 输出参数: pData -- 置换后的状态数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void SubstituteBytes(unsigned char* pData, unsigned char dataCnt, const unsigned char* pBox)
|
||
{
|
||
unsigned char i;
|
||
for (i = 0; i < dataCnt; i++) {
|
||
pData[i] = pBox[pData[i]];
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: ShiftRows
|
||
* 功能描述: 把状态数据移行。
|
||
* 输入参数: pState -- 状态数据。
|
||
* bInvert -- 是否反向移行(解密时使用)。
|
||
* 输出参数: pState -- 移行后的状态数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void ShiftRows(unsigned char* pState, unsigned char bInvert)
|
||
{
|
||
// 注意:状态数据以列形式存放!
|
||
unsigned char r; // row, 行
|
||
unsigned char c; // column,列
|
||
unsigned char temp;
|
||
unsigned char rowData[4];
|
||
|
||
for (r = 1; r < 4; r++) {
|
||
// 备份一行数据
|
||
for (c = 0; c < 4; c++) {
|
||
rowData[c] = pState[r + 4 * c];
|
||
}
|
||
|
||
temp = bInvert ? (4 - r) : r;
|
||
for (c = 0; c < 4; c++) {
|
||
pState[r + 4 * c] = rowData[(c + temp) % 4];
|
||
}
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: GfMultBy02
|
||
* 功能描述: 在GF(28)域的 乘2 运算。
|
||
* 输入参数: num -- 乘数。
|
||
* 输出参数: 无。
|
||
* 返回值: num乘以2的结果。
|
||
*****************************************************************************/
|
||
static unsigned char GfMultBy02(unsigned char num)
|
||
{
|
||
if (0 == (num & 0x80)) {
|
||
num = num << 1;
|
||
}
|
||
else {
|
||
num = (num << 1) ^ BPOLY;
|
||
}
|
||
|
||
return num;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: MixColumns
|
||
* 功能描述: 混合各列数据。
|
||
* 输入参数: pData -- 数据。
|
||
* bInvert -- 是否反向混合(解密时使用)。
|
||
* 输出参数: pData -- 混合列后的状态数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void MixColumns(unsigned char* pData, unsigned char bInvert)
|
||
{
|
||
unsigned char i;
|
||
unsigned char temp;
|
||
unsigned char a0Pa2_M4; // 4(a0 + a2)
|
||
unsigned char a1Pa3_M4; // 4(a1 + a3)
|
||
unsigned char result[4];
|
||
|
||
for (i = 0; i < 4; i++, pData += 4) {
|
||
temp = pData[0] ^ pData[1] ^ pData[2] ^ pData[3];
|
||
result[0] = temp ^ pData[0] ^ GfMultBy02((unsigned char)(pData[0] ^ pData[1]));
|
||
result[1] = temp ^ pData[1] ^ GfMultBy02((unsigned char)(pData[1] ^ pData[2]));
|
||
result[2] = temp ^ pData[2] ^ GfMultBy02((unsigned char)(pData[2] ^ pData[3]));
|
||
result[3] = temp ^ pData[3] ^ GfMultBy02((unsigned char)(pData[3] ^ pData[0]));
|
||
|
||
if (bInvert) {
|
||
a0Pa2_M4 = GfMultBy02(GfMultBy02((unsigned char)(pData[0] ^ pData[2])));
|
||
a1Pa3_M4 = GfMultBy02(GfMultBy02((unsigned char)(pData[1] ^ pData[3])));
|
||
temp = GfMultBy02((unsigned char)(a0Pa2_M4 ^ a1Pa3_M4));
|
||
result[0] ^= temp ^ a0Pa2_M4;
|
||
result[1] ^= temp ^ a1Pa3_M4;
|
||
result[2] ^= temp ^ a0Pa2_M4;
|
||
result[3] ^= temp ^ a1Pa3_M4;
|
||
}
|
||
|
||
memcpy(pData, result, 4);
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: BlockEncrypt
|
||
* 功能描述: 对单块数据加密。
|
||
* 输入参数: pData -- 要加密的块数据。
|
||
* 输出参数: pData -- 加密后的块数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void BlockEncrypt(AESInfo_t* aesInfoP, unsigned char* pData)
|
||
{
|
||
unsigned char i;
|
||
|
||
AddKey(pData, aesInfoP->expandKey);
|
||
for (i = 1; i <= aesInfoP->Nr; i++) {
|
||
SubstituteBytes(pData, 4 * Nb, SBox);
|
||
ShiftRows(pData, 0);
|
||
|
||
if (i != aesInfoP->Nr) {
|
||
MixColumns(pData, 0);
|
||
}
|
||
|
||
AddKey(pData, &aesInfoP->expandKey[4 * Nb * i]);
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: BlockDecrypt
|
||
* 功能描述: 对单块数据解密。
|
||
* 输入参数: pData -- 要解密的数据。
|
||
* 输出参数: pData -- 解密后的数据。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
static void BlockDecrypt(AESInfo_t* aesInfoP, unsigned char* pData)
|
||
{
|
||
unsigned char i;
|
||
|
||
AddKey(pData, &aesInfoP->expandKey[4 * Nb * aesInfoP->Nr]);
|
||
|
||
for (i = aesInfoP->Nr; i > 0; i--) {
|
||
ShiftRows(pData, 1);
|
||
SubstituteBytes(pData, 4 * Nb, InvSBox);
|
||
AddKey(pData, &aesInfoP->expandKey[4 * Nb * (i - 1)]);
|
||
|
||
if (1 != i) {
|
||
MixColumns(pData, 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AESAddPKCS7Padding
|
||
* 描述: PKCS7 方式填充数据
|
||
* 输入参数: data -- 后面最多预留16个字节空间用于存放填充值
|
||
* len -- 数据的长度
|
||
* 输出参数: data -- 添加填充码后的数据
|
||
* 返回值: 填充后的长度
|
||
*****************************************************************************/
|
||
static unsigned int AESAddPKCS7Padding(unsigned char* data, unsigned int len)
|
||
{
|
||
unsigned int newLen;
|
||
newLen = len + 16 - (len % 16);
|
||
memset(&data[len], newLen - len, newLen - len);
|
||
return newLen;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AESDelPKCS7Padding
|
||
* 描述: PKCS7Padding 填充密文解密后剔除填充值
|
||
* 输入参数: pData -- 解密后的数据
|
||
* len -- 数据的长度
|
||
* 输出参数: pData -- 删除填充码后的数据
|
||
* 返回值: 删除后的实际有效数据长度,为0表示传入的数据异常
|
||
*****************************************************************************/
|
||
static unsigned int AESDelPKCS7Padding(unsigned char* pData, unsigned int len)
|
||
{
|
||
if (0 != (len & 0x0F)) {//1组16字节,(0 != (len & 0x0F)说明不是16的倍数
|
||
return 0;
|
||
}
|
||
if (pData[len - 1] > len) {
|
||
return 0;
|
||
}
|
||
|
||
return len - pData[len - 1];
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AESInit
|
||
* 功能描述: 初始化
|
||
* 输入参数: aesInfoP -- 用户需要填充
|
||
* 输出参数: 无。
|
||
* 返回值: 无。
|
||
*****************************************************************************/
|
||
void AESInit(AESInfo_t* aesInfoP)
|
||
{
|
||
|
||
unsigned char i;
|
||
unsigned char* pExpandKey;//扩展密钥
|
||
unsigned char Rcon[4] = { 0x01, 0x00, 0x00, 0x00 };
|
||
|
||
switch (aesInfoP->type) {
|
||
case AES128:
|
||
aesInfoP->Nr = 10;
|
||
aesInfoP->Nk = 4;
|
||
break;
|
||
case AES192:
|
||
aesInfoP->Nr = 12;
|
||
aesInfoP->Nk = 6;
|
||
break;
|
||
case AES256:
|
||
aesInfoP->Nr = 14;
|
||
aesInfoP->Nk = 8;
|
||
break;
|
||
default:
|
||
aesInfoP->Nr = 10;
|
||
aesInfoP->Nk = 4;
|
||
break;
|
||
}
|
||
|
||
//拓展密匙
|
||
memcpy(aesInfoP->expandKey, aesInfoP->key, 4 * aesInfoP->Nk);//第一个是原始密匙,
|
||
pExpandKey = &aesInfoP->expandKey[4 * aesInfoP->Nk]; //拓展密匙AES128:10个、AES192:12个、AES256:14个
|
||
for (i = aesInfoP->Nk; i < Nb * (aesInfoP->Nr + 1); pExpandKey += 4, i++) {
|
||
memcpy(pExpandKey, pExpandKey - 4, 4);
|
||
|
||
if (0 == i % aesInfoP->Nk) {
|
||
RShiftWord(pExpandKey);
|
||
SubstituteBytes(pExpandKey, 4, SBox);
|
||
XorBytes(pExpandKey, Rcon, 4);
|
||
|
||
Rcon[0] = GfMultBy02(Rcon[0]);
|
||
}
|
||
else if (6 < aesInfoP->Nk && i % aesInfoP->Nk == Nb) {
|
||
SubstituteBytes(pExpandKey, 4, SBox);
|
||
}
|
||
|
||
XorBytes(pExpandKey, pExpandKey - 4 * aesInfoP->Nk, 4);
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AESEncrypt
|
||
* 功能描述: 加密数据
|
||
* 输入参数: aesInfoP -- 包含key、加密方式等初始化信息
|
||
* pPlainText -- 要加密的明文数据,其长度为dataLen字节。
|
||
* dataLen -- 明文数据长度,以字节为单位
|
||
* 输出参数: pCipherText -- 加密后的数据
|
||
* 返回值: 解密后的数据长度。
|
||
*****************************************************************************/
|
||
unsigned int AESEncrypt(AESInfo_t* aesInfoP, const unsigned char* pPlainText, unsigned char* pCipherText, unsigned int dataLen)
|
||
{
|
||
unsigned int i;
|
||
const void* pIV;
|
||
|
||
if (pPlainText != pCipherText) {
|
||
memcpy(pCipherText, pPlainText, dataLen);
|
||
}
|
||
|
||
//必须是16的整倍数,不够的填充,pkcs7算法是缺n补n个n,比如13字节数据缺了3个,后面就补3个3;如果刚好是16的倍数,就填充16个16
|
||
dataLen = AESAddPKCS7Padding(pCipherText, dataLen);//注意如果是使用NOpadding方式,则此句注释掉即可,同时解密函数对应的AESDelPKCS7Padding()函数也需一同注释掉。
|
||
|
||
pIV = aesInfoP->pIV;
|
||
for (i = dataLen / (4 * Nb); i > 0; i--, pCipherText += 4 * Nb) {
|
||
if (AES_MODE_CBC == aesInfoP->mode) {
|
||
XorBytes(pCipherText, pIV, 4 * Nb);
|
||
}
|
||
|
||
BlockEncrypt(aesInfoP, pCipherText);
|
||
pIV = pCipherText;
|
||
}
|
||
return dataLen;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* 函数名: AESDecrypt
|
||
* 功能描述: 解密数据
|
||
* 输入参数: aesInfoP -- 包含key、加密方式等初始化信息
|
||
* pCipherText -- 要解密的密文
|
||
* dataLen -- 密文数据长度,以字节为单位,必须是整倍数,AES128:16倍数、AES192:24倍数、AES256:32倍数。
|
||
* 输出参数: pPlainText -- 解密出来的明文
|
||
* 返回值: 返回解密后的数据长度。
|
||
*****************************************************************************/
|
||
unsigned int AESDecrypt(AESInfo_t* aesInfoP, unsigned char* pPlainText, const unsigned char* pCipherText, unsigned int dataLen)
|
||
{
|
||
unsigned int i;
|
||
unsigned char* pPlainTextBack = pPlainText;
|
||
|
||
if (pPlainText != pCipherText) {
|
||
memcpy(pPlainText, pCipherText, dataLen);
|
||
}
|
||
|
||
//当mode=AES_MODE_CBC时需要从最后一块数据开始解密
|
||
pPlainText += dataLen - 4 * Nb;
|
||
for (i = dataLen / (4 * Nb); i > 0; i--, pPlainText -= 4 * Nb) {
|
||
BlockDecrypt(aesInfoP, pPlainText);
|
||
if (AES_MODE_CBC == aesInfoP->mode) {
|
||
if (1 == i) {//原来的第一块数据是初始变量加密的
|
||
XorBytes(pPlainText, aesInfoP->pIV, 4 * Nb);
|
||
}
|
||
else {
|
||
XorBytes(pPlainText, pPlainText - 4 * Nb, 4 * Nb);
|
||
}
|
||
}
|
||
}
|
||
|
||
//因为数据需要16字节对齐,可能有填充数据,需要去除后面的填充数据
|
||
return AESDelPKCS7Padding(pPlainTextBack, dataLen);//注意如果是使用NOpadding方式,则此句注释掉直接return datalen即可,同时加密函数对应的AESAddPKCS7Padding()函数也需一同注释掉。
|
||
|
||
}
|
||
|
||
void set_aes_key(const char key[])
|
||
{//设置加密方式、密匙
|
||
aesInfo.type = AES256;
|
||
aesInfo.mode = AES_MODE_ECB;
|
||
aesInfo.key = key;
|
||
aesInfo.pIV = aes_IV;
|
||
//初始化
|
||
AESInit(&aesInfo);
|
||
}
|
||
|
||
//加密
|
||
unsigned int my_aes_encrypt(unsigned char* sou_data, unsigned char* enc_data, unsigned int len)
|
||
{
|
||
return AESEncrypt(&aesInfo, sou_data, enc_data, len);
|
||
}
|
||
|
||
|
||
//解密
|
||
unsigned int my_aes_decrypt(unsigned char* enc_data, unsigned char* dec_data, unsigned int len)
|
||
{
|
||
return AESDecrypt(&aesInfo, dec_data, enc_data, len);
|
||
}
|
||
//---------------------------------------------------------------------AES END-----------------------------------
|
||
/* the eight DES S-boxes */
|
||
|
||
static uint32_t SB1[64] = {
|
||
0x01010400, 0x00000000, 0x00010000, 0x01010404,
|
||
0x01010004, 0x00010404, 0x00000004, 0x00010000,
|
||
0x00000400, 0x01010400, 0x01010404, 0x00000400,
|
||
0x01000404, 0x01010004, 0x01000000, 0x00000004,
|
||
0x00000404, 0x01000400, 0x01000400, 0x00010400,
|
||
0x00010400, 0x01010000, 0x01010000, 0x01000404,
|
||
0x00010004, 0x01000004, 0x01000004, 0x00010004,
|
||
0x00000000, 0x00000404, 0x00010404, 0x01000000,
|
||
0x00010000, 0x01010404, 0x00000004, 0x01010000,
|
||
0x01010400, 0x01000000, 0x01000000, 0x00000400,
|
||
0x01010004, 0x00010000, 0x00010400, 0x01000004,
|
||
0x00000400, 0x00000004, 0x01000404, 0x00010404,
|
||
0x01010404, 0x00010004, 0x01010000, 0x01000404,
|
||
0x01000004, 0x00000404, 0x00010404, 0x01010400,
|
||
0x00000404, 0x01000400, 0x01000400, 0x00000000,
|
||
0x00010004, 0x00010400, 0x00000000, 0x01010004
|
||
};
|
||
|
||
static uint32_t SB2[64] = {
|
||
0x80108020, 0x80008000, 0x00008000, 0x00108020,
|
||
0x00100000, 0x00000020, 0x80100020, 0x80008020,
|
||
0x80000020, 0x80108020, 0x80108000, 0x80000000,
|
||
0x80008000, 0x00100000, 0x00000020, 0x80100020,
|
||
0x00108000, 0x00100020, 0x80008020, 0x00000000,
|
||
0x80000000, 0x00008000, 0x00108020, 0x80100000,
|
||
0x00100020, 0x80000020, 0x00000000, 0x00108000,
|
||
0x00008020, 0x80108000, 0x80100000, 0x00008020,
|
||
0x00000000, 0x00108020, 0x80100020, 0x00100000,
|
||
0x80008020, 0x80100000, 0x80108000, 0x00008000,
|
||
0x80100000, 0x80008000, 0x00000020, 0x80108020,
|
||
0x00108020, 0x00000020, 0x00008000, 0x80000000,
|
||
0x00008020, 0x80108000, 0x00100000, 0x80000020,
|
||
0x00100020, 0x80008020, 0x80000020, 0x00100020,
|
||
0x00108000, 0x00000000, 0x80008000, 0x00008020,
|
||
0x80000000, 0x80100020, 0x80108020, 0x00108000
|
||
};
|
||
|
||
static uint32_t SB3[64] = {
|
||
0x00000208, 0x08020200, 0x00000000, 0x08020008,
|
||
0x08000200, 0x00000000, 0x00020208, 0x08000200,
|
||
0x00020008, 0x08000008, 0x08000008, 0x00020000,
|
||
0x08020208, 0x00020008, 0x08020000, 0x00000208,
|
||
0x08000000, 0x00000008, 0x08020200, 0x00000200,
|
||
0x00020200, 0x08020000, 0x08020008, 0x00020208,
|
||
0x08000208, 0x00020200, 0x00020000, 0x08000208,
|
||
0x00000008, 0x08020208, 0x00000200, 0x08000000,
|
||
0x08020200, 0x08000000, 0x00020008, 0x00000208,
|
||
0x00020000, 0x08020200, 0x08000200, 0x00000000,
|
||
0x00000200, 0x00020008, 0x08020208, 0x08000200,
|
||
0x08000008, 0x00000200, 0x00000000, 0x08020008,
|
||
0x08000208, 0x00020000, 0x08000000, 0x08020208,
|
||
0x00000008, 0x00020208, 0x00020200, 0x08000008,
|
||
0x08020000, 0x08000208, 0x00000208, 0x08020000,
|
||
0x00020208, 0x00000008, 0x08020008, 0x00020200
|
||
};
|
||
|
||
static uint32_t SB4[64] = {
|
||
0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
||
0x00802080, 0x00800081, 0x00800001, 0x00002001,
|
||
0x00000000, 0x00802000, 0x00802000, 0x00802081,
|
||
0x00000081, 0x00000000, 0x00800080, 0x00800001,
|
||
0x00000001, 0x00002000, 0x00800000, 0x00802001,
|
||
0x00000080, 0x00800000, 0x00002001, 0x00002080,
|
||
0x00800081, 0x00000001, 0x00002080, 0x00800080,
|
||
0x00002000, 0x00802080, 0x00802081, 0x00000081,
|
||
0x00800080, 0x00800001, 0x00802000, 0x00802081,
|
||
0x00000081, 0x00000000, 0x00000000, 0x00802000,
|
||
0x00002080, 0x00800080, 0x00800081, 0x00000001,
|
||
0x00802001, 0x00002081, 0x00002081, 0x00000080,
|
||
0x00802081, 0x00000081, 0x00000001, 0x00002000,
|
||
0x00800001, 0x00002001, 0x00802080, 0x00800081,
|
||
0x00002001, 0x00002080, 0x00800000, 0x00802001,
|
||
0x00000080, 0x00800000, 0x00002000, 0x00802080
|
||
};
|
||
|
||
static uint32_t SB5[64] = {
|
||
0x00000100, 0x02080100, 0x02080000, 0x42000100,
|
||
0x00080000, 0x00000100, 0x40000000, 0x02080000,
|
||
0x40080100, 0x00080000, 0x02000100, 0x40080100,
|
||
0x42000100, 0x42080000, 0x00080100, 0x40000000,
|
||
0x02000000, 0x40080000, 0x40080000, 0x00000000,
|
||
0x40000100, 0x42080100, 0x42080100, 0x02000100,
|
||
0x42080000, 0x40000100, 0x00000000, 0x42000000,
|
||
0x02080100, 0x02000000, 0x42000000, 0x00080100,
|
||
0x00080000, 0x42000100, 0x00000100, 0x02000000,
|
||
0x40000000, 0x02080000, 0x42000100, 0x40080100,
|
||
0x02000100, 0x40000000, 0x42080000, 0x02080100,
|
||
0x40080100, 0x00000100, 0x02000000, 0x42080000,
|
||
0x42080100, 0x00080100, 0x42000000, 0x42080100,
|
||
0x02080000, 0x00000000, 0x40080000, 0x42000000,
|
||
0x00080100, 0x02000100, 0x40000100, 0x00080000,
|
||
0x00000000, 0x40080000, 0x02080100, 0x40000100
|
||
};
|
||
|
||
static uint32_t SB6[64] = {
|
||
0x20000010, 0x20400000, 0x00004000, 0x20404010,
|
||
0x20400000, 0x00000010, 0x20404010, 0x00400000,
|
||
0x20004000, 0x00404010, 0x00400000, 0x20000010,
|
||
0x00400010, 0x20004000, 0x20000000, 0x00004010,
|
||
0x00000000, 0x00400010, 0x20004010, 0x00004000,
|
||
0x00404000, 0x20004010, 0x00000010, 0x20400010,
|
||
0x20400010, 0x00000000, 0x00404010, 0x20404000,
|
||
0x00004010, 0x00404000, 0x20404000, 0x20000000,
|
||
0x20004000, 0x00000010, 0x20400010, 0x00404000,
|
||
0x20404010, 0x00400000, 0x00004010, 0x20000010,
|
||
0x00400000, 0x20004000, 0x20000000, 0x00004010,
|
||
0x20000010, 0x20404010, 0x00404000, 0x20400000,
|
||
0x00404010, 0x20404000, 0x00000000, 0x20400010,
|
||
0x00000010, 0x00004000, 0x20400000, 0x00404010,
|
||
0x00004000, 0x00400010, 0x20004010, 0x00000000,
|
||
0x20404000, 0x20000000, 0x00400010, 0x20004010
|
||
};
|
||
|
||
static uint32_t SB7[64] = {
|
||
0x00200000, 0x04200002, 0x04000802, 0x00000000,
|
||
0x00000800, 0x04000802, 0x00200802, 0x04200800,
|
||
0x04200802, 0x00200000, 0x00000000, 0x04000002,
|
||
0x00000002, 0x04000000, 0x04200002, 0x00000802,
|
||
0x04000800, 0x00200802, 0x00200002, 0x04000800,
|
||
0x04000002, 0x04200000, 0x04200800, 0x00200002,
|
||
0x04200000, 0x00000800, 0x00000802, 0x04200802,
|
||
0x00200800, 0x00000002, 0x04000000, 0x00200800,
|
||
0x04000000, 0x00200800, 0x00200000, 0x04000802,
|
||
0x04000802, 0x04200002, 0x04200002, 0x00000002,
|
||
0x00200002, 0x04000000, 0x04000800, 0x00200000,
|
||
0x04200800, 0x00000802, 0x00200802, 0x04200800,
|
||
0x00000802, 0x04000002, 0x04200802, 0x04200000,
|
||
0x00200800, 0x00000000, 0x00000002, 0x04200802,
|
||
0x00000000, 0x00200802, 0x04200000, 0x00000800,
|
||
0x04000002, 0x04000800, 0x00000800, 0x00200002
|
||
};
|
||
|
||
static uint32_t SB8[64] = {
|
||
0x10001040, 0x00001000, 0x00040000, 0x10041040,
|
||
0x10000000, 0x10001040, 0x00000040, 0x10000000,
|
||
0x00040040, 0x10040000, 0x10041040, 0x00041000,
|
||
0x10041000, 0x00041040, 0x00001000, 0x00000040,
|
||
0x10040000, 0x10000040, 0x10001000, 0x00001040,
|
||
0x00041000, 0x00040040, 0x10040040, 0x10041000,
|
||
0x00001040, 0x00000000, 0x00000000, 0x10040040,
|
||
0x10000040, 0x10001000, 0x00041040, 0x00040000,
|
||
0x00041040, 0x00040000, 0x10041000, 0x00001000,
|
||
0x00000040, 0x10040040, 0x00001000, 0x00041040,
|
||
0x10001000, 0x00000040, 0x10000040, 0x10040000,
|
||
0x10040040, 0x10000000, 0x00040000, 0x10001040,
|
||
0x00000000, 0x10041040, 0x00040040, 0x10000040,
|
||
0x10040000, 0x10001000, 0x10001040, 0x00000000,
|
||
0x10041040, 0x00041000, 0x00041000, 0x00001040,
|
||
0x00001040, 0x00040040, 0x10000000, 0x10041000
|
||
};
|
||
|
||
/* PC1: left and right halves bit-swap */
|
||
|
||
static uint32_t LHs[16] = {
|
||
0x00000000, 0x00000001, 0x00000100, 0x00000101,
|
||
0x00010000, 0x00010001, 0x00010100, 0x00010101,
|
||
0x01000000, 0x01000001, 0x01000100, 0x01000101,
|
||
0x01010000, 0x01010001, 0x01010100, 0x01010101
|
||
};
|
||
|
||
static uint32_t RHs[16] = {
|
||
0x00000000, 0x01000000, 0x00010000, 0x01010000,
|
||
0x00000100, 0x01000100, 0x00010100, 0x01010100,
|
||
0x00000001, 0x01000001, 0x00010001, 0x01010001,
|
||
0x00000101, 0x01000101, 0x00010101, 0x01010101,
|
||
};
|
||
|
||
/* platform-independant 32-bit integer manipulation macros */
|
||
|
||
#define GET_UINT32(n,b,i) \
|
||
{ \
|
||
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
|
||
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
|
||
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
|
||
| ( (uint32_t) (b)[(i) + 3] ); \
|
||
}
|
||
|
||
#define PUT_UINT32(n,b,i) \
|
||
{ \
|
||
(b)[(i) ] = (uint8_t) ( (n) >> 24 ); \
|
||
(b)[(i) + 1] = (uint8_t) ( (n) >> 16 ); \
|
||
(b)[(i) + 2] = (uint8_t) ( (n) >> 8 ); \
|
||
(b)[(i) + 3] = (uint8_t) ( (n) ); \
|
||
}
|
||
|
||
/* Initial Permutation macro */
|
||
|
||
#define DES_IP(X,Y) \
|
||
{ \
|
||
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
|
||
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
|
||
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
|
||
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
|
||
Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \
|
||
T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \
|
||
X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \
|
||
}
|
||
|
||
/* Final Permutation macro */
|
||
|
||
#define DES_FP(X,Y) \
|
||
{ \
|
||
X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \
|
||
T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \
|
||
Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \
|
||
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
|
||
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
|
||
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
|
||
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
|
||
}
|
||
|
||
/* DES round macro */
|
||
|
||
#define DES_ROUND(X,Y) \
|
||
{ \
|
||
T = *SK++ ^ X; \
|
||
Y ^= SB8[ (T ) & 0x3F ] ^ \
|
||
SB6[ (T >> 8) & 0x3F ] ^ \
|
||
SB4[ (T >> 16) & 0x3F ] ^ \
|
||
SB2[ (T >> 24) & 0x3F ]; \
|
||
\
|
||
T = *SK++ ^ ((X << 28) | (X >> 4)); \
|
||
Y ^= SB7[ (T ) & 0x3F ] ^ \
|
||
SB5[ (T >> 8) & 0x3F ] ^ \
|
||
SB3[ (T >> 16) & 0x3F ] ^ \
|
||
SB1[ (T >> 24) & 0x3F ]; \
|
||
}
|
||
|
||
/* DES key schedule */
|
||
|
||
static void
|
||
des_main_ks( uint32_t SK[32], const uint8_t key[8] ) {
|
||
int i;
|
||
uint32_t X, Y, T;
|
||
|
||
GET_UINT32( X, key, 0 );
|
||
GET_UINT32( Y, key, 4 );
|
||
|
||
/* Permuted Choice 1 */
|
||
|
||
T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4);
|
||
T = ((Y ) ^ X) & 0x10101010; X ^= T; Y ^= (T );
|
||
|
||
X = (LHs[ (X ) & 0xF] << 3) | (LHs[ (X >> 8) & 0xF ] << 2)
|
||
| (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ] )
|
||
| (LHs[ (X >> 5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6)
|
||
| (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4);
|
||
|
||
Y = (RHs[ (Y >> 1) & 0xF] << 3) | (RHs[ (Y >> 9) & 0xF ] << 2)
|
||
| (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ] )
|
||
| (RHs[ (Y >> 4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6)
|
||
| (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4);
|
||
|
||
X &= 0x0FFFFFFF;
|
||
Y &= 0x0FFFFFFF;
|
||
|
||
/* calculate subkeys */
|
||
|
||
for( i = 0; i < 16; i++ )
|
||
{
|
||
if( i < 2 || i == 8 || i == 15 )
|
||
{
|
||
X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF;
|
||
Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF;
|
||
}
|
||
else
|
||
{
|
||
X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF;
|
||
Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF;
|
||
}
|
||
|
||
*SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000)
|
||
| ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
|
||
| ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000)
|
||
| ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000)
|
||
| ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000)
|
||
| ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000)
|
||
| ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400)
|
||
| ((Y >> 14) & 0x00000200) | ((Y ) & 0x00000100)
|
||
| ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010)
|
||
| ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004)
|
||
| ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001);
|
||
|
||
*SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
|
||
| ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
|
||
| ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000)
|
||
| ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
|
||
| ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000)
|
||
| ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000)
|
||
| ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000)
|
||
| ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400)
|
||
| ((Y ) & 0x00000200) | ((Y << 7) & 0x00000100)
|
||
| ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011)
|
||
| ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002);
|
||
}
|
||
}
|
||
|
||
/* DES 64-bit block encryption/decryption */
|
||
|
||
static void
|
||
des_crypt( const uint32_t SK[32], const uint8_t input[8], uint8_t output[8] ) {
|
||
uint32_t X, Y, T;
|
||
|
||
GET_UINT32( X, input, 0 );
|
||
GET_UINT32( Y, input, 4 );
|
||
|
||
DES_IP( X, Y );
|
||
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
DES_ROUND( Y, X ); DES_ROUND( X, Y );
|
||
|
||
DES_FP( Y, X );
|
||
|
||
PUT_UINT32( Y, output, 0 );
|
||
PUT_UINT32( X, output, 4 );
|
||
}
|
||
|
||
static int
|
||
lrandomkey(lua_State *L) {
|
||
char tmp[8];
|
||
int i;
|
||
char x = 0;
|
||
for (i=0;i<8;i++) {
|
||
tmp[i] = random() & 0xff;
|
||
x ^= tmp[i];
|
||
}
|
||
if (x==0) {
|
||
tmp[0] |= 1; // avoid 0
|
||
}
|
||
lua_pushlstring(L, tmp, 8);
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
padding_mode_table(lua_State *L) {
|
||
// see macros PADDING_MODE_ISO7816_4, etc.
|
||
const char * mode[] = {
|
||
"iso7816_4",
|
||
"pkcs7",
|
||
};
|
||
int n = sizeof(mode) / sizeof(mode[0]);
|
||
int i;
|
||
lua_createtable(L,0,n);
|
||
for (i=0;i<n;i++) {
|
||
lua_pushinteger(L, i);
|
||
lua_setfield(L, -2, mode[i]);
|
||
}
|
||
}
|
||
|
||
typedef void (*padding_add)(uint8_t buf[8], int offset);
|
||
typedef int (*padding_remove)(const uint8_t *last);
|
||
|
||
static void
|
||
padding_add_iso7816_4(uint8_t buf[8], int offset) {
|
||
buf[offset] = 0x80;
|
||
memset(buf+offset+1, 0, 7-offset);
|
||
}
|
||
|
||
static int
|
||
padding_remove_iso7816_4(const uint8_t *last) {
|
||
int padding = 1;
|
||
int i;
|
||
for (i=0;i<8;i++,last--) {
|
||
if (*last == 0) {
|
||
padding++;
|
||
} else if (*last == 0x80) {
|
||
return padding;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
// invalid
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
padding_add_pkcs7(uint8_t buf[8], int offset) {
|
||
uint8_t x = 8-offset;
|
||
memset(buf+offset, x, 8-offset);
|
||
}
|
||
|
||
static int
|
||
padding_remove_pkcs7(const uint8_t *last) {
|
||
int padding = *last;
|
||
int i;
|
||
for (i=1;i<padding;i++) {
|
||
--last;
|
||
if (*last != padding)
|
||
return 0; // invalid
|
||
}
|
||
return padding;
|
||
}
|
||
|
||
static padding_add padding_add_func[] = {
|
||
padding_add_iso7816_4,
|
||
padding_add_pkcs7,
|
||
};
|
||
|
||
static padding_remove padding_remove_func[] = {
|
||
padding_remove_iso7816_4,
|
||
padding_remove_pkcs7,
|
||
};
|
||
|
||
static inline void
|
||
check_padding_mode(lua_State *L, int mode) {
|
||
if (mode < 0 || mode >= PADDING_MODE_COUNT)
|
||
luaL_error(L, "Invalid padding mode %d", mode);
|
||
}
|
||
|
||
static void
|
||
add_padding(lua_State *L, uint8_t buf[8], const uint8_t *src, int offset, int mode) {
|
||
check_padding_mode(L, mode);
|
||
if (offset >= 8)
|
||
luaL_error(L, "Invalid padding");
|
||
memcpy(buf, src, offset);
|
||
padding_add_func[mode](buf, offset);
|
||
}
|
||
|
||
static int
|
||
remove_padding(lua_State *L, const uint8_t *last, int mode) {
|
||
check_padding_mode(L, mode);
|
||
return padding_remove_func[mode](last);
|
||
}
|
||
|
||
static void
|
||
des_key(lua_State *L, uint32_t SK[32]) {
|
||
size_t keysz = 0;
|
||
const void * key = luaL_checklstring(L, 1, &keysz);
|
||
if (keysz != 8) {
|
||
luaL_error(L, "Invalid key size %d, need 8 bytes", (int)keysz);
|
||
}
|
||
des_main_ks(SK, key);
|
||
}
|
||
|
||
static int
|
||
ldesencode(lua_State *L) {
|
||
uint32_t SK[32];
|
||
des_key(L, SK);
|
||
|
||
size_t textsz = 0;
|
||
const uint8_t * text = (const uint8_t *)luaL_checklstring(L, 2, &textsz);
|
||
size_t chunksz = (textsz + 8) & ~7;
|
||
int padding_mode = luaL_optinteger(L, 3, PADDING_MODE_ISO7816_4);
|
||
uint8_t tmp[SMALL_CHUNK];
|
||
uint8_t *buffer = tmp;
|
||
if (chunksz > SMALL_CHUNK) {
|
||
buffer = lua_newuserdatauv(L, chunksz, 0);
|
||
}
|
||
int i;
|
||
for (i=0;i<(int)textsz-7;i+=8) {
|
||
des_crypt(SK, text+i, buffer+i);
|
||
}
|
||
uint8_t tail[8];
|
||
add_padding(L, tail, text+i, textsz - i, padding_mode);
|
||
des_crypt(SK, tail, buffer+i);
|
||
lua_pushlstring(L, (const char *)buffer, chunksz);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
ldesdecode(lua_State *L) {
|
||
uint32_t ESK[32];
|
||
des_key(L, ESK);
|
||
uint32_t SK[32];
|
||
int i;
|
||
for( i = 0; i < 32; i += 2 ) {
|
||
SK[i] = ESK[30 - i];
|
||
SK[i + 1] = ESK[31 - i];
|
||
}
|
||
size_t textsz = 0;
|
||
const uint8_t *text = (const uint8_t *)luaL_checklstring(L, 2, &textsz);
|
||
if ((textsz & 7) || textsz == 0) {
|
||
return luaL_error(L, "Invalid des crypt text length %d", (int)textsz);
|
||
}
|
||
int padding_mode = luaL_optinteger(L, 3, PADDING_MODE_ISO7816_4);
|
||
uint8_t tmp[SMALL_CHUNK];
|
||
uint8_t *buffer = tmp;
|
||
if (textsz > SMALL_CHUNK) {
|
||
buffer = lua_newuserdatauv(L, textsz, 0);
|
||
}
|
||
for (i=0;i<textsz;i+=8) {
|
||
des_crypt(SK, text+i, buffer+i);
|
||
}
|
||
int padding = remove_padding(L, buffer + textsz - 1, padding_mode);
|
||
if (padding <= 0 || padding > 8) {
|
||
return luaL_error(L, "Invalid des crypt text");
|
||
}
|
||
lua_pushlstring(L, (const char *)buffer, textsz - padding);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void
|
||
Hash(const char * str, int sz, uint8_t key[8]) {
|
||
uint32_t djb_hash = 5381L;
|
||
uint32_t js_hash = 1315423911L;
|
||
|
||
int i;
|
||
for (i=0;i<sz;i++) {
|
||
uint8_t c = (uint8_t)str[i];
|
||
djb_hash += (djb_hash << 5) + c;
|
||
js_hash ^= ((js_hash << 5) + c + (js_hash >> 2));
|
||
}
|
||
|
||
key[0] = djb_hash & 0xff;
|
||
key[1] = (djb_hash >> 8) & 0xff;
|
||
key[2] = (djb_hash >> 16) & 0xff;
|
||
key[3] = (djb_hash >> 24) & 0xff;
|
||
|
||
key[4] = js_hash & 0xff;
|
||
key[5] = (js_hash >> 8) & 0xff;
|
||
key[6] = (js_hash >> 16) & 0xff;
|
||
key[7] = (js_hash >> 24) & 0xff;
|
||
}
|
||
|
||
static int
|
||
lhashkey(lua_State *L) {
|
||
size_t sz = 0;
|
||
const char * key = luaL_checklstring(L, 1, &sz);
|
||
uint8_t realkey[8];
|
||
Hash(key,(int)sz,realkey);
|
||
lua_pushlstring(L, (const char *)realkey, 8);
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
ltohex(lua_State *L) {
|
||
static char hex[] = "0123456789abcdef";
|
||
size_t sz = 0;
|
||
const uint8_t * text = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
char tmp[SMALL_CHUNK];
|
||
char *buffer = tmp;
|
||
if (sz > SMALL_CHUNK/2) {
|
||
buffer = lua_newuserdatauv(L, sz * 2, 0);
|
||
}
|
||
int i;
|
||
for (i=0;i<sz;i++) {
|
||
buffer[i*2] = hex[text[i] >> 4];
|
||
buffer[i*2+1] = hex[text[i] & 0xf];
|
||
}
|
||
lua_pushlstring(L, buffer, sz * 2);
|
||
return 1;
|
||
}
|
||
|
||
#define HEX(v,c) { char tmp = (char) c; if (tmp >= '0' && tmp <= '9') { v = tmp-'0'; } else { v = tmp - 'a' + 10; } }
|
||
|
||
static int
|
||
lfromhex(lua_State *L) {
|
||
size_t sz = 0;
|
||
const char * text = luaL_checklstring(L, 1, &sz);
|
||
if (sz & 1) {
|
||
return luaL_error(L, "Invalid hex text size %d", (int)sz);
|
||
}
|
||
char tmp[SMALL_CHUNK];
|
||
char *buffer = tmp;
|
||
if (sz > SMALL_CHUNK*2) {
|
||
buffer = lua_newuserdatauv(L, sz / 2, 0);
|
||
}
|
||
int i;
|
||
for (i=0;i<sz;i+=2) {
|
||
uint8_t hi,low;
|
||
HEX(hi, text[i]);
|
||
HEX(low, text[i+1]);
|
||
if (hi > 16 || low > 16) {
|
||
return luaL_error(L, "Invalid hex text", text);
|
||
}
|
||
buffer[i/2] = hi<<4 | low;
|
||
}
|
||
lua_pushlstring(L, buffer, i/2);
|
||
return 1;
|
||
}
|
||
|
||
// Constants are the integer part of the sines of integers (in radians) * 2^32.
|
||
static const uint32_t k[64] = {
|
||
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee ,
|
||
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 ,
|
||
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be ,
|
||
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 ,
|
||
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa ,
|
||
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 ,
|
||
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed ,
|
||
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a ,
|
||
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c ,
|
||
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 ,
|
||
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 ,
|
||
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 ,
|
||
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 ,
|
||
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 ,
|
||
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 ,
|
||
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 };
|
||
|
||
// r specifies the per-round shift amounts
|
||
static const uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
|
||
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
|
||
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
|
||
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
|
||
|
||
// leftrotate function definition
|
||
#define LEFTROTATE(x, c) (((x) << (c)) | ((x) >> (32 - (c))))
|
||
|
||
static void
|
||
digest_md5(uint32_t w[16], uint32_t result[4]) {
|
||
uint32_t a, b, c, d, f, g, temp;
|
||
int i;
|
||
|
||
a = 0x67452301u;
|
||
b = 0xefcdab89u;
|
||
c = 0x98badcfeu;
|
||
d = 0x10325476u;
|
||
|
||
for(i = 0; i<64; i++) {
|
||
if (i < 16) {
|
||
f = (b & c) | ((~b) & d);
|
||
g = i;
|
||
} else if (i < 32) {
|
||
f = (d & b) | ((~d) & c);
|
||
g = (5*i + 1) % 16;
|
||
} else if (i < 48) {
|
||
f = b ^ c ^ d;
|
||
g = (3*i + 5) % 16;
|
||
} else {
|
||
f = c ^ (b | (~d));
|
||
g = (7*i) % 16;
|
||
}
|
||
|
||
temp = d;
|
||
d = c;
|
||
c = b;
|
||
b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
|
||
a = temp;
|
||
}
|
||
|
||
result[0] = a;
|
||
result[1] = b;
|
||
result[2] = c;
|
||
result[3] = d;
|
||
}
|
||
|
||
// hmac64 use md5 algorithm without padding, and the result is (c^d .. a^b)
|
||
static void
|
||
hmac(uint32_t x[2], uint32_t y[2], uint32_t result[2]) {
|
||
uint32_t w[16];
|
||
uint32_t r[4];
|
||
int i;
|
||
for (i=0;i<16;i+=4) {
|
||
w[i] = x[1];
|
||
w[i+1] = x[0];
|
||
w[i+2] = y[1];
|
||
w[i+3] = y[0];
|
||
}
|
||
|
||
digest_md5(w,r);
|
||
|
||
result[0] = r[2]^r[3];
|
||
result[1] = r[0]^r[1];
|
||
}
|
||
|
||
static void
|
||
hmac_md5(uint32_t x[2], uint32_t y[2], uint32_t result[2]) {
|
||
uint32_t w[16];
|
||
uint32_t r[4];
|
||
int i;
|
||
for (i=0;i<12;i+=4) {
|
||
w[i] = x[0];
|
||
w[i+1] = x[1];
|
||
w[i+2] = y[0];
|
||
w[i+3] = y[1];
|
||
}
|
||
|
||
w[12] = 0x80;
|
||
w[13] = 0;
|
||
w[14] = 384;
|
||
w[15] = 0;
|
||
|
||
digest_md5(w,r);
|
||
|
||
result[0] = (r[0] + 0x67452301u) ^ (r[2] + 0x98badcfeu);
|
||
result[1] = (r[1] + 0xefcdab89u) ^ (r[3] + 0x10325476u);
|
||
}
|
||
|
||
static void
|
||
read64(lua_State *L, uint32_t xx[2], uint32_t yy[2]) {
|
||
size_t sz = 0;
|
||
const uint8_t *x = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
if (sz != 8) {
|
||
luaL_error(L, "Invalid uint64 x");
|
||
}
|
||
const uint8_t *y = (const uint8_t *)luaL_checklstring(L, 2, &sz);
|
||
if (sz != 8) {
|
||
luaL_error(L, "Invalid uint64 y");
|
||
}
|
||
xx[0] = x[0] | x[1]<<8 | x[2]<<16 | x[3]<<24;
|
||
xx[1] = x[4] | x[5]<<8 | x[6]<<16 | x[7]<<24;
|
||
yy[0] = y[0] | y[1]<<8 | y[2]<<16 | y[3]<<24;
|
||
yy[1] = y[4] | y[5]<<8 | y[6]<<16 | y[7]<<24;
|
||
}
|
||
|
||
static int
|
||
pushqword(lua_State *L, uint32_t result[2]) {
|
||
uint8_t tmp[8];
|
||
tmp[0] = result[0] & 0xff;
|
||
tmp[1] = (result[0] >> 8 )& 0xff;
|
||
tmp[2] = (result[0] >> 16 )& 0xff;
|
||
tmp[3] = (result[0] >> 24 )& 0xff;
|
||
tmp[4] = result[1] & 0xff;
|
||
tmp[5] = (result[1] >> 8 )& 0xff;
|
||
tmp[6] = (result[1] >> 16 )& 0xff;
|
||
tmp[7] = (result[1] >> 24 )& 0xff;
|
||
|
||
lua_pushlstring(L, (const char *)tmp, 8);
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
lhmac64(lua_State *L) {
|
||
uint32_t x[2], y[2];
|
||
read64(L, x, y);
|
||
uint32_t result[2];
|
||
hmac(x,y,result);
|
||
return pushqword(L, result);
|
||
}
|
||
|
||
/*
|
||
h1 = crypt.hmac64_md5(a,b)
|
||
m = md5.sum((a..b):rep(3))
|
||
h2 = crypt.xor_str(m:sub(1,8), m:sub(9,16))
|
||
assert(h1 == h2)
|
||
*/
|
||
static int
|
||
lhmac64_md5(lua_State *L) {
|
||
uint32_t x[2], y[2];
|
||
read64(L, x, y);
|
||
uint32_t result[2];
|
||
hmac_md5(x,y,result);
|
||
return pushqword(L, result);
|
||
}
|
||
|
||
/*
|
||
8bytes key
|
||
string text
|
||
*/
|
||
static int
|
||
lhmac_hash(lua_State *L) {
|
||
uint32_t key[2];
|
||
size_t sz = 0;
|
||
const uint8_t *x = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
if (sz != 8) {
|
||
luaL_error(L, "Invalid uint64 key");
|
||
}
|
||
key[0] = x[0] | x[1]<<8 | x[2]<<16 | x[3]<<24;
|
||
key[1] = x[4] | x[5]<<8 | x[6]<<16 | x[7]<<24;
|
||
const char * text = luaL_checklstring(L, 2, &sz);
|
||
uint8_t h[8];
|
||
Hash(text,(int)sz,h);
|
||
uint32_t htext[2];
|
||
htext[0] = h[0] | h[1]<<8 | h[2]<<16 | h[3]<<24;
|
||
htext[1] = h[4] | h[5]<<8 | h[6]<<16 | h[7]<<24;
|
||
uint32_t result[2];
|
||
hmac(htext,key,result);
|
||
return pushqword(L, result);
|
||
}
|
||
|
||
// powmodp64 for DH-key exchange
|
||
|
||
// The biggest 64bit prime
|
||
#define P 0xffffffffffffffc5ull
|
||
|
||
static inline uint64_t
|
||
mul_mod_p(uint64_t a, uint64_t b) {
|
||
uint64_t m = 0;
|
||
while(b) {
|
||
if(b&1) {
|
||
uint64_t t = P-a;
|
||
if ( m >= t) {
|
||
m -= t;
|
||
} else {
|
||
m += a;
|
||
}
|
||
}
|
||
if (a >= P - a) {
|
||
a = a * 2 - P;
|
||
} else {
|
||
a = a * 2;
|
||
}
|
||
b>>=1;
|
||
}
|
||
return m;
|
||
}
|
||
|
||
static inline uint64_t
|
||
pow_mod_p(uint64_t a, uint64_t b) {
|
||
if (b==1) {
|
||
return a;
|
||
}
|
||
uint64_t t = pow_mod_p(a, b>>1);
|
||
t = mul_mod_p(t,t);
|
||
if (b % 2) {
|
||
t = mul_mod_p(t, a);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
// calc a^b % p
|
||
static uint64_t
|
||
powmodp(uint64_t a, uint64_t b) {
|
||
if (a > P)
|
||
a%=P;
|
||
return pow_mod_p(a,b);
|
||
}
|
||
|
||
static void
|
||
push64(lua_State *L, uint64_t r) {
|
||
uint8_t tmp[8];
|
||
tmp[0] = r & 0xff;
|
||
tmp[1] = (r >> 8 )& 0xff;
|
||
tmp[2] = (r >> 16 )& 0xff;
|
||
tmp[3] = (r >> 24 )& 0xff;
|
||
tmp[4] = (r >> 32 )& 0xff;
|
||
tmp[5] = (r >> 40 )& 0xff;
|
||
tmp[6] = (r >> 48 )& 0xff;
|
||
tmp[7] = (r >> 56 )& 0xff;
|
||
|
||
lua_pushlstring(L, (const char *)tmp, 8);
|
||
}
|
||
|
||
static int
|
||
ldhsecret(lua_State *L) {
|
||
uint32_t x[2], y[2];
|
||
read64(L, x, y);
|
||
uint64_t xx = (uint64_t)x[0] | (uint64_t)x[1]<<32;
|
||
uint64_t yy = (uint64_t)y[0] | (uint64_t)y[1]<<32;
|
||
if (xx == 0 || yy == 0)
|
||
return luaL_error(L, "Can't be 0");
|
||
uint64_t r = powmodp(xx, yy);
|
||
|
||
push64(L, r);
|
||
|
||
return 1;
|
||
}
|
||
|
||
#define G 5
|
||
|
||
static int
|
||
ldhexchange(lua_State *L) {
|
||
size_t sz = 0;
|
||
const uint8_t *x = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
if (sz != 8) {
|
||
luaL_error(L, "Invalid dh uint64 key");
|
||
}
|
||
uint32_t xx[2];
|
||
xx[0] = x[0] | x[1]<<8 | x[2]<<16 | x[3]<<24;
|
||
xx[1] = x[4] | x[5]<<8 | x[6]<<16 | x[7]<<24;
|
||
|
||
uint64_t x64 = (uint64_t)xx[0] | (uint64_t)xx[1]<<32;
|
||
if (x64 == 0)
|
||
return luaL_error(L, "Can't be 0");
|
||
|
||
uint64_t r = powmodp(G, x64);
|
||
push64(L, r);
|
||
return 1;
|
||
}
|
||
|
||
// base64
|
||
|
||
static int
|
||
lb64encode(lua_State *L) {
|
||
static const char* encoding = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||
size_t sz = 0;
|
||
const uint8_t * text = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
int encode_sz = (sz + 2)/3*4;
|
||
char tmp[SMALL_CHUNK];
|
||
char *buffer = tmp;
|
||
if (encode_sz > SMALL_CHUNK) {
|
||
buffer = lua_newuserdatauv(L, encode_sz, 0);
|
||
}
|
||
int i,j;
|
||
j=0;
|
||
for (i=0;i<(int)sz-2;i+=3) {
|
||
uint32_t v = text[i] << 16 | text[i+1] << 8 | text[i+2];
|
||
buffer[j] = encoding[v >> 18];
|
||
buffer[j+1] = encoding[(v >> 12) & 0x3f];
|
||
buffer[j+2] = encoding[(v >> 6) & 0x3f];
|
||
buffer[j+3] = encoding[(v) & 0x3f];
|
||
j+=4;
|
||
}
|
||
int padding = sz-i;
|
||
uint32_t v;
|
||
switch(padding) {
|
||
case 1 :
|
||
v = text[i];
|
||
buffer[j] = encoding[v >> 2];
|
||
buffer[j+1] = encoding[(v & 3) << 4];
|
||
buffer[j+2] = '=';
|
||
buffer[j+3] = '=';
|
||
break;
|
||
case 2 :
|
||
v = text[i] << 8 | text[i+1];
|
||
buffer[j] = encoding[v >> 10];
|
||
buffer[j+1] = encoding[(v >> 4) & 0x3f];
|
||
buffer[j+2] = encoding[(v & 0xf) << 2];
|
||
buffer[j+3] = '=';
|
||
break;
|
||
}
|
||
lua_pushlstring(L, buffer, encode_sz);
|
||
return 1;
|
||
}
|
||
|
||
static inline int
|
||
b64index(uint8_t c) {
|
||
static const int decoding[] = {62,-1,-1,-1,63,52,53,54,55,56,57,58,59,60,61,-1,-1,-1,-2,-1,-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,-1,-1,-1,-1,-1,-1,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51};
|
||
int decoding_size = sizeof(decoding)/sizeof(decoding[0]);
|
||
if (c<43) {
|
||
return -1;
|
||
}
|
||
c -= 43;
|
||
if (c>=decoding_size)
|
||
return -1;
|
||
return decoding[c];
|
||
}
|
||
|
||
static int
|
||
lb64decode(lua_State *L) {
|
||
size_t sz = 0;
|
||
const uint8_t * text = (const uint8_t *)luaL_checklstring(L, 1, &sz);
|
||
int decode_sz = (sz+3)/4*3;
|
||
char tmp[SMALL_CHUNK];
|
||
char *buffer = tmp;
|
||
if (decode_sz > SMALL_CHUNK) {
|
||
buffer = lua_newuserdatauv(L, decode_sz, 0);
|
||
}
|
||
int i,j;
|
||
int output = 0;
|
||
for (i=0;i<sz;) {
|
||
int padding = 0;
|
||
int c[4];
|
||
for (j=0;j<4;) {
|
||
if (i>=sz) {
|
||
return luaL_error(L, "Invalid base64 text");
|
||
}
|
||
c[j] = b64index(text[i]);
|
||
if (c[j] == -1) {
|
||
++i;
|
||
continue;
|
||
}
|
||
if (c[j] == -2) {
|
||
++padding;
|
||
}
|
||
++i;
|
||
++j;
|
||
}
|
||
uint32_t v;
|
||
switch (padding) {
|
||
case 0:
|
||
v = (unsigned)c[0] << 18 | c[1] << 12 | c[2] << 6 | c[3];
|
||
buffer[output] = v >> 16;
|
||
buffer[output+1] = (v >> 8) & 0xff;
|
||
buffer[output+2] = v & 0xff;
|
||
output += 3;
|
||
break;
|
||
case 1:
|
||
if (c[3] != -2 || (c[2] & 3)!=0) {
|
||
return luaL_error(L, "Invalid base64 text");
|
||
}
|
||
v = (unsigned)c[0] << 10 | c[1] << 4 | c[2] >> 2 ;
|
||
buffer[output] = v >> 8;
|
||
buffer[output+1] = v & 0xff;
|
||
output += 2;
|
||
break;
|
||
case 2:
|
||
if (c[3] != -2 || c[2] != -2 || (c[1] & 0xf) !=0) {
|
||
return luaL_error(L, "Invalid base64 text");
|
||
}
|
||
v = (unsigned)c[0] << 2 | c[1] >> 4;
|
||
buffer[output] = v;
|
||
++ output;
|
||
break;
|
||
default:
|
||
return luaL_error(L, "Invalid base64 text");
|
||
}
|
||
}
|
||
lua_pushlstring(L, buffer, output);
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
lxor_str(lua_State *L) {
|
||
size_t len1,len2;
|
||
const char *s1 = luaL_checklstring(L,1,&len1);
|
||
const char *s2 = luaL_checklstring(L,2,&len2);
|
||
if (len2 == 0) {
|
||
return luaL_error(L, "Can't xor empty string");
|
||
}
|
||
luaL_Buffer b;
|
||
char * buffer = luaL_buffinitsize(L, &b, len1);
|
||
int i;
|
||
for (i=0;i<len1;i++) {
|
||
buffer[i] = s1[i] ^ s2[i % len2];
|
||
}
|
||
luaL_addsize(&b, len1);
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
//2022-12-01 by luren AES设置key
|
||
static int
|
||
lsetaeskey(lua_State *L) {
|
||
size_t keyLen;
|
||
const char *key = luaL_checklstring(L,1,&keyLen);
|
||
if (keyLen == 0) {
|
||
return luaL_error(L, "error aes key ");
|
||
}
|
||
|
||
set_aes_key(key);
|
||
return 1;
|
||
}
|
||
|
||
//2022-12-01 by luren AES加密
|
||
static int
|
||
laesencode(lua_State *L) {
|
||
size_t sourcetLen;
|
||
const char *sourceMsg = luaL_checklstring(L,1,&sourcetLen);
|
||
|
||
if (sourcetLen == 0) {
|
||
return luaL_error(L, "error aes laesencode ");
|
||
}
|
||
unsigned char encrypt_data[MAX_AES_DATA_LEN] ={0};
|
||
int nEncryLen = my_aes_encrypt((unsigned char *)sourceMsg, (unsigned char *)encrypt_data, sourcetLen);
|
||
|
||
luaL_Buffer b;
|
||
char * buffer = luaL_buffinitsize(L, &b, nEncryLen);
|
||
for (int i=0;i<nEncryLen;i++)
|
||
{
|
||
buffer[i] = encrypt_data[i];
|
||
}
|
||
|
||
luaL_addsize(&b, nEncryLen);
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
//2022-12-01 by luren AES解密
|
||
static int
|
||
laesdecode(lua_State *L) {
|
||
size_t encryptLen;
|
||
const char *encryptData = luaL_checklstring(L,1,&encryptLen);
|
||
|
||
if (encryptLen == 0) {
|
||
return luaL_error(L, "error aes laesdecode ");
|
||
}
|
||
unsigned char decryptData[MAX_AES_DATA_LEN] ={0};
|
||
int decryLen = my_aes_decrypt((unsigned char *)encryptData, (unsigned char *)decryptData, encryptLen);
|
||
|
||
luaL_Buffer b;
|
||
char * buffer = luaL_buffinitsize(L, &b, decryLen);
|
||
for (int i=0;i<decryLen;i++)
|
||
{
|
||
buffer[i] = decryptData[i];
|
||
}
|
||
|
||
luaL_addsize(&b, decryLen);
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
// defined in lsha1.c
|
||
int lsha1(lua_State *L);
|
||
int lhmac_sha1(lua_State *L);
|
||
|
||
|
||
LUAMOD_API int
|
||
luaopen_skynet_crypt(lua_State *L) {
|
||
luaL_checkversion(L);
|
||
static int init = 0;
|
||
if (!init) {
|
||
// Don't need call srandom more than once.
|
||
init = 1 ;
|
||
srandom((random() << 8) ^ (time(NULL) << 16) ^ getpid());
|
||
}
|
||
luaL_Reg l[] = {
|
||
{ "hashkey", lhashkey },
|
||
{ "randomkey", lrandomkey },
|
||
{ "desencode", ldesencode },
|
||
{ "desdecode", ldesdecode },
|
||
{ "hexencode", ltohex },
|
||
{ "hexdecode", lfromhex },
|
||
{ "hmac64", lhmac64 },
|
||
{ "hmac64_md5", lhmac64_md5 },
|
||
{ "dhexchange", ldhexchange },
|
||
{ "dhsecret", ldhsecret },
|
||
{ "base64encode", lb64encode },
|
||
{ "base64decode", lb64decode },
|
||
{ "sha1", lsha1 },
|
||
{ "hmac_sha1", lhmac_sha1 },
|
||
{ "hmac_hash", lhmac_hash },
|
||
{ "xor_str", lxor_str },
|
||
{ "padding", NULL },
|
||
{ "setaeskey", lsetaeskey },
|
||
{ "aesencode", laesencode },
|
||
{ "aesdecode", laesdecode },
|
||
{ NULL, NULL },
|
||
};
|
||
luaL_newlib(L,l);
|
||
|
||
padding_mode_table(L);
|
||
lua_setfield(L, -2, "padding");
|
||
|
||
return 1;
|
||
}
|
||
|
||
LUAMOD_API int
|
||
luaopen_client_crypt(lua_State *L) {
|
||
return luaopen_skynet_crypt(L);
|
||
}
|